
RealCode Reference
Updated February 2010

2nd Edition
StockFinder 5

 REALCODE REFERENCE

Worden Brothers, Inc.
www.Worden.com

Five Oaks Office Park
4905 Pine Cone Drive

Durham, NC 27707

 REALCODE REFERENCE
© 2010 Worden Brothers, Inc.

All rights reserved. Printed in the United States of America. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or
by any means, or stored in a database or retrieval system, without the prior written permission of
the publisher.

Information has been obtained by Worden Brothers, Inc. from sources believed to be reliable.
However, because of the possibility of human or mechanical error by our sources, Worden
Brothers, Inc. does not guarantee the accuracy, adequacy or completeness of any information
contained herein and is not responsible for any errors or omissions or the results obtained from the
use of such information.

StockFinder®, RealCode, BackScanner, TeleChart®, Balance of Power, MoneyStream, and Time
Segmented Volume are trademarks or registered trademarks of Worden Brothers, Inc. All rights
reserved.

www.Worden.com
Worden Brothers, Inc,
Five Oaks Office Park
4905 Pine Cone Drive

Durham, NC 27707
Customer Service: 1-800-776-4940
Technical Support: 1-919-408-0542

Fax: 1-919-408-0545

Page | 1

Table of Contents
What’s new for RealCode in StockFinder version 5.0 .. 5

Chapter 1- Introduction .. 7

About the Author ... 7

Additional Resources .. 8

What types of RealCode can you create? .. 8

Quick Start .. 9

Chapter 2 - A Visual Basic.Net Programming Primer ... 13

Fundamental Data Types .. 13

Identifiers (variables) .. 13

Conditionals (IF statements) .. 14

Operators.. 15

Looping ... 16

Arrays .. 16

Reserved Words and Special Characters .. 17

Chapter 3 - RealCode Fundamentals .. 19

Working with Price and Volume ... 21

Looking Backwards ... 22

What else can you do? ... 23

RealCode Properties and Methods .. 23

RealCode Indicators .. 25

RealCode Conditions .. 26

RealCode Paint Brush ... 27

Saving your RealCode ... 29

Chapter 4 - The RealCode Editor .. 31

Chapter 5 – RealCode Functions .. 33

NetChange & PercentChange Functions .. 34

Max/Min Open,High,Low and Close ... 34

TradeRange Function.. 35

Bar Interval Functions... 36

BarInterval Property .. 36

Child Functions ... 37

Indicator.AVG & Indicator.MovingAverage(20)... 37

Indicator.XAVG & Indicator.ExponentialAverage ... 37

Indicator.STOC & Indicator.Stochastics .. 38

Page | 2

Indicator.RSI & Indicator.RelativeStrengthIndex ... 38

More Functions, Properties and Methods ... 38

Chapter 6 - Accessing External Indicators, Conditions and Parameters. ... 39

Importing Indicators .. 39

Importing Indicators/Conditions from the Chart ... 40

Chapter 7 - RealCode Classes ... 41

Manual Looping (AutoLoop = false) ... 42

Chapter 8 – Getting Deeper into RealCode .. 45

Cumulative Indicators ... 45

Variables and Scope ... 45

Where in the world am I running? ... 46

Debugging ... 47

Labels and Chart Overlay Text .. 49

Reading Price data for a Different Symbol and/or Bar Interval than the active chart 49

Global Variables/Memory .. 51

Chapter 9 - Code Examples... 55

Calculating the Net/Percent Change for a specific number of bars ... 55

Plotting the number of up/down bars in a row ... 55

Checking for volume surge at the last hour of the trading day.. 56

Million Shares Traded per Bar .. 57

Creating Cyclical Charts: Average Monthly Percent Change .. 58

Simulating an Alert with RealCode Conditions ... 59

Using a RealCode Class to create your own price history manually .. 60

Chapter 10 – Code Samples for StockFinder Workbook .. 63

Exercise 1 – Unusually High Trade Range ... 63

Exercise 2 – Above Long and Short Averages ... 63

Exercise 4 – ADX Values over 40 .. 64

Exercise 10 – Price down Ten Percent in a month ... 64

Solution 1: Price down 10 percent in last 21 days ... 65

Solution 2: Alternate version using true calendar months .. 65

Exercise 12 – Filter out low volume stocks .. 65

Exercise 15 - MACD Histogram turning up ... 66

Exercise 17 – Moving Averages Crossing .. 66

Exercise 18 – Oversold Stochastics ... 66

Exercise 21 – Price beween $10 and %50 .. 67

Page | 3

Exercise 25 – Price Above a moving average ... 67

Exercise 26 – Stocks with above average volume .. 67

Page | 4

Page | 5

What’s new for RealCode in StockFinder version 5.0

For StockFinder version 5.0 there are many exciting changes to the RealCode language. One of
the major changes to version 5 is the ability to import indicators and conditions into your code directly
from the Library without first adding them to a chart. Additionally you can un-link indicators and
condtions that you have referenced on a chart. This allows you to save your indicators and conditions
even if they reference other items on the chart. This is a giant leap forward for RealCode developers as
you no longer need to save a Chart if your code references other indicators/code. This also means you
no longer need an indicator or condition to exist on the chart for you to call it in your code. You can now
import indicators and conditions into your code directly from the Library without first adding them to
the chart.

Version 5 adds some additional child functions. Child functions, like moving average and
stochastics can be applied to Price, Volume, or any imported indicator. They can also be chained
together to produce child of child calculations. For TeleChart users these will feel more like the PCF
syntax that is available in TeleChart. For more information see Chapter 5.

Some additional TimeFrame (now called Bar Interval) functions have been added to help you
determine the active bar interval of the chart. See Chapter 5.

You can now reference price data for any symbol and/or bar interval from directly within your

RealCode. This allows you to compare the active symbol with another, or the active bar interval with a
different one.

Additionally, you can now discover the context in which your code is running allowing you make

programming decisions based on a set of conditions. When running on a chart, the chart start and end
date are available as well as the number of bars visible. There is also a new directive to instruct
RealCode to re-calculate when the zoom or scroll changes on the chart. When running as a market
indicator (index) there are new properties to define the start and end of the list as well as the number of
items in the list. For more information, see chapter 8.

 For advanced users, there is now a global memory object you can access to share data with
other RealCode calculations.

The RealCode help and code-complete engine has been upgraded to have improved
functionality and to document more of the functions that are available to you. Integrated F1 help
directly in the editor will open a new RealCode API class reference. The class reference is a companion
to this document and should be used to reference all of the classes and functions available to you.

There are also more places to use your RealCode in StockFinder 5. With the changes to Scans

and Sorting in StockFinder, your conditions and indicators can be used much more easily outside the
Chart itself.

In addition to the actual changes in StockFinder and RealCode, there has also been a
terminology change. Rules are now called Conditions. This will not effect any previous source code but
all references to Rules from previous documentation is now the equivilant of Conditions in version 5.0.

Page | 6

Page | 7

Chapter 1- Introduction

This book introduces the RealCode™ programming Language. RealCode is based on the Microsoft Visual
Basic.Net framework and uses the Visual Basic (VB) language syntax. RealCode is compiled into a .net
(pronounced dot net) assembly and run by the StockFinder application. Unlike the scripting languages
that some other applications use, RealCode is fully compiled and runs at the same machine language
level as the StockFinder application itself. This gives you unmatched performance, running at the same
speed as if we (the developers of StockFinder) wrote the code ourselves, with the flexibility of “run-time
development and assembly” that you get by writing your own custom code (Whew, that’s a mouthful!),

This book covers only the RealCode™ language and implementation and does not cover the basics of the
StockFinder application. It is assumed you understand how to run the program, add indicators, create
charts and scans and save or load your Layouts.

This book does not fully cover all the classes and functions available to you via the RealCode API or the
.net 3.5 framework. The full RealCode class api is available online at
http://www.stockfinder.com/realcodeapi/ and contains all the properties and methods you can call
from your code.

The first part of this book covers the introduction to programming and covers the basics of VB.net
development. If you’re new to programming or new to VB.net this chapter will go over the fundamental
data types, constructs and flow control needed to program in VB.net It is by no means a complete
reference for VB.net. If you are new to software development or to programming in general, and you
wish to get into deeper RealCode programming, I highly recommend getting a few VB.Net books and try
some programming outside of StockFinder. For basic RealCode calculations this book should be enough
to get you started.

 If you’re an experienced developer and/or understand the concepts of variables, flow control,
conditionals and loops you can skip over the introduction to VB and move on to the RealCode
fundamentals.

THE CODE EXAMPLES PROVIDED IN THIS BOOK ARE FOR EDUCATIONAL PURPOSES ONLY. THE EXAMPLES
IN NO WAY SUGGEST AN ENDORSEMENT, TRADING STRATEGY OR GUARANTEE ANY SORT OF RETURN
ON INVESTEMENT. THE CODE EXAMPLES ARE PROVIDED AS-IS.

About the Author

Ken Gilb is the Chief Software Engineer for Worden Brothers, Inc. His work at Worden Brothers includes
“big picture” architectural overview as well as “down and dirty” code writing. He’s a self proclaimed
code monkey. Quote “I write code and I love it”.

http://www.stockfinder.com/realcodeapi/

Page | 8

Additional Resources

The RealCode Class Reference API is available in the RealCode Editor (via the help button) or online at
http://www.stockfinder.com/realcodeapi/

In addition to this User Guide and the Class Reference, you can use many existing Microsoft Visual
Basic.Net references, Websites, blogs and forums.

Microsoft Online References:

 MSDN: http://msdn.microsoft.com – Microsoft Developers Network. API reference, training,
examples.

 Microsoft VB.net new to Development: http://msdn2.microsoft.com/en-
us/vbasic/ms789097.aspx

Worden Brothers, Inc

 Class Reference API: http://www.stockfinder.com/realcodeapi/

 Worden website: http://www.Worden.com – market commentary, discussion forums.

 StockFinder website: http://www.StockFinder.com - Videos & manuals

 Worden Discussion Forum: http://www.worden.com/training - Active forums with Worden
Trainers, Worden developers and customers.

What types of RealCode can you create?

You can create the following RealCode items:

 Indicators (plots on chart or WatchList column)
 Conditions (true/false Conditions to sort, scan, filter, color or backtest)
 Paint Brush (indicator coloring based on code)
 Scans (via RealCode Conditions or Indicators applied to a Scan)
 WatchList Condition Lights (via RealCode Conditions or Indicators applied to a WatchList)
 Sorts (via RealCode Indicators applied to a WatchList column)
 BackScanner entry or exit Condition. (RealCode Condition applied to entry/exit Condition)

Indicators, Conditions and Paint Brushes are all created for and owned by a Chart. Indicators and
Conditions can also be added to any WatchList to perform a scan, sort or filter. You can treat a
RealCode indicator or condition like any other indicator or condition in that it can be used in other
conditions, List Calculations, Scans, Sorts, back testing etc. Anything you can do with a regular
indicator/condition in StockFinder can also be performed with a RealCode Indicator /condition.

http://www.stockfinder.com/realcodeapi/
http://msdn.microsoft.com/
http://msdn2.microsoft.com/en-us/vbasic/ms789097.aspx
http://msdn2.microsoft.com/en-us/vbasic/ms789097.aspx
http://www.stockfinder.com/realcodeapi/
http://www.worden.com/
http://www.stockfinder.com/
http://www.worden.com/training

Page | 9

Quick Start

Nothing beats a code example, so let’s start with something basic. We’re going to make a

RealCode indicator that will plot the closing value of a security (stock symbol). Then we’ll modify it to
show you the high, the net change and finally the percent change.

1. Click on the Add Indicator + button at the top-left of a chart.
2. Click on New RealCode Indicator

3. Type Quickstart as the name for the new RealCode indicator and click Ok

4. Type the following line of code into the editor

Plot = Price.Close

5. Click Apply
6. Click Ok to close the editor.

You should now have an indicator on your Chart that represents the closing prices for the

selected symbol (the data will depend on the symbol selected). Let’s modify the code to plot the High of
the day instead of the close. Right click on your RealCode indicator and choose Edit RealCode.

Change the code in the window from Price.Close to Price.High. You should now have a line that looks
like this:

Plot = Price.High

Click Apply and Ok to close the editor window. Your plot is now showing you the high of the
selected symbol for every date on the chart. Let’s modify the code one more time, but instead of

Page | 10

showing the high or close, we’re going to show the daily net change. Right click on your indicator and
choose Edit RealCode.

Change the existing code in the editor to the following:

Plot = Price.Close – Price.Close(1)

Click Apply and close the editor window. Your indicator is now showing you the daily net change

for the selected symbol. In the code above Price.Close is equal to the close for the currently
calculating bar or the close today for the latest bar. Price.Close(1) is the previous day’s close, or
the close for yesterday for the latest bar. By subtracting the current close by the previous day’s close, we
get the net change or the amount the stock went up or down from the previous day.

We could also have used the built in function NetChange to perform the same calculation. Right-
click on your RealCode indicator and choose Edit RealCode. Change the existing code to:

Plot = Price.NetChange

Hit Apply and close the editor. You will notice your plot doesn’t change from the previous

example as they both return the current bar net change of price.

Let’s make one last change and we’ll be finished with this lesson. Right click on your indicator
and choose, Edit RealCode. Change the code in the editor to:

Dim netChange As Single = price.close - price.close(1)

Dim percentChange As Single = netChange / price.close

plot = percentChange * 100

We’ve broken the code up into 3 lines for clarity; you could also type the above as:
plot = ((price.close - price.close(1)) / price.close) * 100

Both are mathematically the same but the 3 lines reads a bit easier, so let’s use this for our example.

On line one we store the net change calculation into a variable named netChange. A variable is simply
the place in memory to store data (or in this case a specific numeric value). For now, let’s ignore the rest

of the syntax on this line, but you can note that the netChange variable has the same formula as the
first example assigned to it.

On the second line, you’ll notice we divide our previously calculated value (netChange) and
divide it by the current closing price. This gives us the percent change and we store this in a variable
named percentChange (how appropriate!). At this point in time we could type Plot =

percentChange on a new line and return the current value, but this would be a decimal number (0.0
to 1.0) . Most people like to think of percentages as values from 1-100 so we simply multiply the

percentChange variable by 100 and set that to the Plot output. (the *symbol is multiply)

The previous code was to introduce you to the math and programming concepts involved with
RealCode. If you want to calculate the net change or percent change in RealCode, you can simply call
the netChange or percentChange functions on price:

Plot = Price.NetChange()

Page | 11

Plot = Price.PercentChange()

That’s the end of our quick start, if you’re lost, don’t worry we’ll go into more detail about what

is going on in the next few chapters. If you’re new to programming and programming concepts or you
simply want a primer on programming with Visual Basic.net, read on to Chapter 2. If you understand
variables and conditionals and want to dive in to the meat, skip ahead to Chapter 3.

Page | 12

Page | 13

Chapter 2 - A Visual Basic.Net Programming Primer

 If you are not familiar with VB.net or with programming in general, the next few sections will go

over basic programming principals. This is by no means a substitute for a Visual Basic.Net book or online
reference but should give you enough basic information to get started in RealCode.

Fundamental Data Types

All programming deals with data: generating data, manipulating data, and consuming data (or some
combination of the three). The most common and fundamental data types you will deal with in
RealCode are numbers (integer, single, decimal) text (string, char), Booleans (true/false), Colors (pretty
colors) and Dates (not an evening out on the town, calendar dates). There are many more data types
available in the .net framework (hundreds of them. Look at the size of that thing, its huge!). But for the
basic understating of RealCode you will need to know the following:

 Integer (whole numbers, like parameter values) example: 1,2,3
 Single (fractional numbers like stock prices) example: 1.25, 55.73
 Boolean (true or false, used for Conditions) example: True, False (brilliant!)
 Date (date and time) example: 5/12/1975 13:30:06
 String (text) example: “Hi”, “Hello!”, “StockFinder is fun”
 Color (duh) example: Color.Red, Color.Lime, Color.Coral

Identifiers (variables)

Identifiers are unique names you give to variables of a specific data type. Variables are placeholders
in memory for specific types of data. If you remember you high school Algebra then you already
understand variables in formulas like the Pythagorean Theorem (a₂+ b₂ = c₂) where a, b and c are all
variables. In VB.net we declare variables of a specific type (integer, single, string, color) to tell the
computer what type of information we want to store in the variable. To declare a variable in VB.net we
use the Dim and As keywords along with the variable name (identifier) and data type. Variable names
must not contain a space but may contain mixed case alpha numeric symbols and underscores.
Examples:

 Dim averagePeriod as Integer

 Dim net_Change as Single

 Dim stockSymbol as String

In the above example we have declared 3 variables: AveragePeriod, NetChange and

StockSymbol. By default, they do not contain any value, or rather, they contain a default value.
Numeric values are always 0 by default while the String data type contains a special value called
Nothing

1
VB.net is not a case sensitive language, so naming a variable averagePeriod can also be typed as

AveragePeriod or AVERagePeRiOd (in case your caps lock key is acting funny) anywhere else in code and
it represents the same variable that you declared with the Dim keyword. Variable names must be
unique (you cannot have two variables with the same name).

1
 Nothing is the equivalent of Null in other programming languages like C++ or C#

Page | 14

Conditionals (IF statements)

Conditions are used to branch your code down one path or another. In VB.Net you use a
combination of keywords: If, then, else , elseif, end if. Example:

If expression then
 Do something
Else

 Do something else
End if

So, for example, if you wanted to test if an integer variable named period is greater than zero you

would use the following:

If period > 0 then

 Plot = 1

Else

 Plot = -1

End if

The ElseIf keyword lets you test another condition in your If/Then statement:

If period > 0 then

 Plot = 1

Elseif period < 0 then

 Plot = -1

Else

 Plot = 0

End if

You can have as many ElseIf conditions before your final Else branch.

If you have many If/Elseif statements to compare you can keep your code looking clean and

easier to read by using a Select Case statement:

Select Case period

 Case < -5

 … do something…

 Case > 5

 … do something…

Case 0

… do something…

Case else

 … do something…

End Select

Page | 15

Operators

There are a few different types of operators in VB.net, but the most basic ones you will deal with are

the mathematical and logical operators. The mathematical operators are:

+ Addition

- Subtraction

* Multiplication

/ Floating point division (returns a fractional value)

\ Integer division (returns a whole number)

Mod Modulus division (returns the remainder)

^ Exponent (to the power of)

= Assignment and comparison operator

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

& String concatenation (combines two strings)

Logical operators are used to test if a statement’s conditions are true or false. They are used to

combine multiple conditions in If/Then statements:

 And - both conditions must evaluate to True
 AndAlso – if the first condition is false, it will not evaluate the second condition.

 Or - One of the 2 conditions must evaluate to True.
 OrElse – if the first condition is true it will not evaluate the second condition

 XOr - results to True ONLY if 1 of the 2 conditions is true
 Not - results to True if the conditions result to False

Logical operators are used in If then statements like so:

If price.close > price.high and price.close > price.open then

 ….

End if

The equal sign (=) performs two roles. It is used as an assignment operator, (to assign a value to a
variable) and it is also used as a comparison operator (to test if two values are equal). When used as a
comparison operator (for example in an IF statement) it will return a Boolean value. When used as an
assignment operator, it can be combined with other math operators to use the target of the assignment
in the calculation. For example: Count += 1 is the equivalent of: Count = Count + 1

All math calculations follow the order of operations (parenthesis, exponents, multiplication, division,
addition, subtraction) so you if you need to perform some addition or subtraction before a
multiplication you can group your calculation with parenthesis like so:

Dim X as Single = (5 + 5) / 10

Page | 16

Looping

Looping is at the heart of every RealCode class. Behind the scenes we’re actually performing a loop
for you before we call your code. If you need to perform your own loops you could use one of the
following statements:

For Each Looping Statement:

For each item as string in ListOfItems

 … do something…..

Next

For Next Loop:

For i as integer = 1 to 100

 … do something 100 times

Next i

Do While Loop:

Do

… some operation

While someVariable = true

Performing a loop can become an expensive operation. Since your code is called for every bar of the
calculation, your loop will perform x times the loop count. So if you’re loop is 1 to 100, you’re going to
perform 100xnumber of bars. This can really slow down your calculation. If you notice a calculation
taking significant amount of time, you may wish to try to “unroll” the loop or cache your data and
perform the loop calculation on the first or last bar. See the Cyclical Charts example of caching data to
limit the number of looping operations performed.

Arrays

Arrays are a special data type that is a container of multiple data elements. You can think of an array
as a bucket of data that stores 1 to x number of items in the variable. Each item is referenced by a
numeric index. Think of an array as a spreadsheet with one column and many rows of data. The rows
are accessed by selecting the row number (array index). Most tabular data is stored in arrays. All pricing
and volume data along with every other indicator or condition in the system is stored in multiple arrays.

An example of an array of strings would be:

Dim myArray(3) as String

The above array myArray will hold 4 values. Arrays always start at index 0, so when defining an array

in VB.net you define the upper bound of the index or in the case above, 3.
Confused? Let’s try this approach. You want to store the four following strings in an array:

“Rubber”,”Baby”,”Buggy”,”Bumpers”. Your array will have rubber at index 0, Baby and index 1, buggy at

Page | 17

index 2 and bumpers at index 3. 0-3 is four elements. 3 is the upper bound of your array so you declare
it with 3. The other way you can think of this is: arrays bounds are declared as one less than the number
of elements in the array. 4 elements minus 1 element = 3.

Dim MyArray(3) as string

myArray(0) = “Rubber ”

myArray(1) = “Baby ”

myArray(2) = “Buggy ”

myArray(3) = “Bumpers”

for each item as string in myArray

 debug.writeline (item)

next

The result of the above code would be: Rubber Baby Buggy Bumpers.

Reserved Words and Special Characters

VB.net has many other reserved words (words you cannot use as a variable name) and other special
characters that mean different things. The list is too many to go into this overview. A good beginning
vb.net book or some references on the web should lead you down the many more options available to
you.

One special character to note is the '(single quote apostrophe) character. This starts a comment and
the compiler ignores any text on the same line after this character. It is good for adding documentation
to your code (documentation in code is good for when you review your code 3 months later and try to
remember what the heck your code is doing. Do it for any complex calculation or for anything
ambiguous).

Another set of keywords that are useful is Exit Function. Adding these two words to your code
will stop evaluating the remaining lines of code for the current bar and exit your RealCode immediately.
It will then advance to the next bar and call into your code again. This is helpful when you do not wish to
wrap your code into a bunch of If statements to isolate specific conditions that would normally cause
all other calculations to cease.

Page | 18

Page | 19

Chapter 3 - RealCode Fundamentals

RealCode is the name of the StockFinder programming language and is based on the Microsoft

Visual Basic syntax. At its core, RealCode is a compiled Visual Basic.net Class. Classes are modular code
that can be assembled with other classes to create a new algorithm and perform a calculation.

All RealCode items inherit a special class BaseScriptingTemplate. Using the RealCode API

Reference you will notice that BaseScriptingTemplate inherits another class named Block.
Blocks are compiled code that are connected together in a block diagram to perform a calculation.
Every plot, condition, scan or sort in the StockFinder application is performed through a series of Blocks
in a Block Diagram.

When you write RealCode, StockFinder compiles it for you and creates a block diagram to perform
your calculation. The diagram is always visible to you (simply Edit your RealCode item and click on the
block diagram link) but you really don’t need to know the details of what happens in a diagram to
understand how to write effective RealCode. The Block diagram is simply the plumbing for getting the
data into and out of your calculations.

 All you really need to know is that your code is compiled (which means it’s fast. Have I
mentioned the word compiled enough?) and that the .net framework and all the hundreds of pre-built
classes and methods are available to you in your RealCode. If you’re familiar with .net you can access
any of the namespaces by simply typing them into your code editor2 .

Whether creating a RealCode Indicator, Condition or Paintbrush, you need to understand how
StockFinder evaluates your code to create your calculation. There are two ways to create a RealCode
item. The traditional (and easier way) is to write the body of a function (method) that is called for every
plot, color or condition that will appear on the chart. An advanced way, called RealCode classes, lets you
write an entire class (not just a single function) to perform your calculation. RealCode Classes are
covered in chapter 7.

The Price Chart:

All RealCode is based on the Chart that owns

(displays) the RealCode. If your code is not
running on the chart (say it is only being listed in
the WatchList) then your code runs in the
“theoretical” chart that would be displayed if
your indicator were on a chart.

 When StockFinder calls your RealCode it
prepares all the Pricing and Volume data for the
current symbol and the selected bar interval.

Starting at the oldest date “bar”
(Open/High/low/Close values) for the selected
bar interval, StockFinder calls your RealCode
asking you to provide a value for the current bar. It then stores the resulting value and advances to the
next date, calling your code once more for the second value. This repeats until the last date of data and
it then constructs the appropriate line, paintbrush or scan based on the values you set in code.

2
 System.IO and System.Net are excluded for security.

Page | 20

Essentially every bar (date) will become the current bar as it loops through the Pricing and Volume Data.
Because each bar is defined by the selected Bar Interval the “current” bar could be a day, month, year,
hour or minute or any other custom bar interval provided. This means if your Chart or WatchList column
is set to 1 minute each price bar represents one minute of trading data and your code will be called for a
value for every minute of data starting with the oldest and ending with the latest.

The cycle below shows the context that your RealCode is calculated:

The main point you need to understand when writing RealCode is that your code is executing for the

“Current Bar”. Current Bar will represent a date on the Price history. All functions and calculations you
perform are in relation to the current bar. If you need the previous close value (for say a net or percent
change calculation) you would ask for data 1 bar ago. Most of the functions available to you in RealCode
allow you do specify what bar (ago) to return.

The series of tables below shows how StockFinder calls your RealCode. The top row of the table

shows the dates for a specific price chart, The second row shows the stock price for each date. The third
row represents the values your RealCode will return.

Before we call your code, you have no values set

Set the current date to the
next date

Call RealCode
Indicator/condition/brush

and ask for a value

Check to see if value was
returned

If value was returned,
output current date and

value

Check to see if there are
more dates available

Page | 21

After we call your code for the first time, your value is set for the first bar of the indicator

We continue to call your code until all the values have been set for each date of the price chart.

Each of the 3 RealCode items has a different keyword to set the value for the current bar

RealCode Item Return Value Keyword Return Value Data Type

Indicator Plot = Single

Condition Pass (or Fail) Boolean

Paint Brush PlotColor = Drawing.Color

Lets’ say you wanted a basic condition that gives you a buy signal every time price closes above the

previous bar’s high. To reference pricing data for the current bar you simply call Price.Close (see
Quickstart examples for more details) . To reference the High value for the previous bar you simply
include a parameter value with the number of bars in the past you wish to get the value for:
Price.High(1). To write this simple condition it would simply look like this:

If Price.Close > Price.High(1) then Pass

A Plain English Translation: If the close price of the current bar (today) is greater than the High 1 bar

ago (yesterday) then my condition passes for the current bar.

When your code is called (executed), you can access the symbol, volume, bar date, and pricing data
(including the open, high, low and close prices). When getting the pricing and volume data you can get
the values for the current bar or any previous bars by using an offset index when calling for the pricing
or volume data as seen in the example above.

Working with Price and Volume

Price and volume for the current symbol and bar interval are always available to you in RealCode.

 Volume in StockFinder is reported in 100 share intervals, Therefor when checking for
volume in RealCode a value of 1 = 100 shares, a value of 1000 is 100,000 shares.

Page | 22

Price(0) Returns the close/last value for the current bar

Price.Last Same as above

Price.Value Same as above

Price.Open Returns the open price for the current bar

Price.High Returns the high value for the current bar

Price.Low Returns the low value for the current bar

Price.Close Same as price.last

Price.Open(1), Price.High(1), Price.Low(1), Returns the open, high and low values 1 bar ago

Volume.Value Returns the volume (reported in 100 shares) for
the current bar

Volume.Value(1) The Volume (reported in 100 shares) for the
previous bar

Looking Backwards

There are a lot of reasons why you may need to look for previous price, volume or indicator values.
Some basic built in functions all use look-back (bars ago) parameters: NetChange, PercentChange,New
High/Low, Moving Up/Down, Crossovers, Greater/Less than. Using previous values is a core concept you
need to understand.

In the picture above, the current bar is the far right bar on the chart. If you were to ask for

Price.Low(1) it would be the low for the previous bar. Price.Low(2) would be to bars ago. The chart
above should help you visualize what the barsAgo parameters are used for in any of the RealCode
calculations.

Advanced Tip:
If there is not enough data to calculate your indicator/condition (because you are calling for data x

bars ago) RealCode will not output a value until there is enough data for your code to calculate. You can

Page | 23

help speed this process up and increase performance by doing a check at the top of your code that will
exit if the current bar is less than the largest number of bars back you need to evaluate.

What else can you do?

There are also many child indicator functions you can call (moving average, exponential average,
stochastics, RSI, etc) that also can use the look-back parameter to get data from previous bars.

Additionally, your RealCode can access the other Conditions and Indicators in the Library or on the
Chart. So besides being able to get the values for Price and Volume data, you can get the value of any
other indicator or condition. The values are automatically matched up for you when calling your code,
so all the same offset calls work for getting any of the values. This means your RealCode can be
calculated using the values of the hundreds of pre-defined indicators in the Indicator Library, or any
custom RealCode indicators you create.

You can also reference any saved indicator or condition from the Library, including the hundreds of
defaults that come with StockFinder, or any indicators or conditions you or another user creates.

You can also declare UserInput variables that are inputs into your code and are provided at “run
time”(when StockFinder is getting a value for the current bar) to further customize your calculation. An
example of a UserInput variable might be a period, a color or a numeric value to test against. UserInput
variables can be set using the QuickEdit feature of the Indicator or Condition. You can access QuickEdit
by simply left clicking on the Indicator or right clicking on a condition and choosing edit.

Lastly, when creating a Paint Brush, you can also access the data of the line you’re painting. If your
paintbrush is applied to something other than price data, your paintbrush can use the data of the
indicator you’re painting to perform its calculations.

 The actual Price History pane does not need to be visible on the chart (nor the volume
pane) for the data to be available to you in RealCode. Just know that your calculation will be
called for the active symbol and for every bar for the selected bar interval as if the price data
was displayed on the chart.

You do not have to produce a value every time you are called. Doing so will create your
own custom bar interval. The frequency at which you output the data is entirely up to you
(though most calculations will want a value for every bar to match the bar interval of the
chart). If you mix your own custom bar interval with another indicator that is on a longer or
shorter bar interval, the chart will automatically adjust to add more dates to accommodate the
longer bar interval.

Your RealCode calculations will always use the maximum data available (as defined by the number

of bars to use in the Data Manager) except when used in a WatchList column or scan. When used as a
WatchList column, you only need to produce one value (the most current). When used as a condition
light you need only 50 values (the last 50 true/false). When your indicator or condition is used in this
manner on the WatchList, StockFinder automatically detects the minimum bars needed to calculate and
limits the data to that number for increased performance. Because of the auto detecting feature you
should only return values when you intend to and should set Plot = Single.NaN (for Indicators)
and should not call pass until your condition has enough data to pass.

RealCode Properties and Methods

Page | 24

Besides all the built in .net classes, methods and functions, RealCode has added some additional
properties and methods. These are always available in the RealCode editor. There is a class library
available directy from within the RealCode editor (you can hit F1 on any keyword to open the help
directly for that keyword) or online at http://www.stockfinder.com/realcodeapi/

While there are hundreds of classes and functions you can use, we will only cover some of the more
common ones here:

Methods: Data Type Description

Price.Open Single Returns the Open value for the
currently calculating bar

Price.High Single Returns the High value for the
currently calculating bar

Price.Low Single Returns the Low value for the
currently calculating bar

Price.Close Single Returns the closing price for the
currently calculating bar

Price.Last Single Same as price.close

Price.Open(x), Price.High(x), Price.Low(x),
Price.Close(x)

Single Returns the open/high/low or
close for x number of bars ago (x
is an integer value)

Volume.Value Single The Volume value for the current
bar (reported in 100 shares)

Volume.Value(offset) Single The volume value for x number of
bars ago.

Me.CurrentDate Date Returns the date and time for the
currently calculating bar

Me.CurrentSymbol String Returns the symbol for the
currently calculating bar

DateValue(offset)

Date Returns the date for offset
number of bars ago

MyValue(offset) Single Returns a value you have already
set for the given offset

Me.isFirstBar Boolean Returns true if calculating for the
first bar of the calculation

Me.isLastBar Boolean Returns true if calculating for the
last bar of the calculation.

Me.Log.Info(txt)

String
Parameter

Call to write to the Info Debug Log

Price.AVG(20) Single The 20 bar simple moving average
of price

Price.STOC(12,2) Single A 12, 2 stochastics of price.

Price.MaxHigh(50) Single The highest high in the last 50
bars

Volume.MinValue(40) Single The lowest volume in the previous
40 bars.

Table 1 –Common RealCode Properties and Methods. This is not a complete list. Please refer to the API Class
documentation.

http://www.stockfinder.com/realcodeapi/

Page | 25

RealCode Indicators

To create a RealCode Indicator, click the Add Indicator button on the chart and select New
RealCode™ Indicator

Provide a name for your Indicator and Click Ok to open the editor:

 RealCode indicators are created in their own pane but you can Overlay or Merge them with a

different pane by dragging your indicator to a different pane.
 To edit an existing RealCode Indicator Right click on the indicator legend or the indicator itself and

choose Edit RealCode from the menu.
When creating a RealCode Indicator, you are writing the code to produce a plot (line) on a chart.

The result of calling your code will display a value on the chart for every date for the selected bar
interval. This means if the chart is on a minute chart, your code will be called for every minute starting
with the oldest minute and progressing to the newest minute of price history. If the bar interval is set to
monthly, your code will be called for the oldest month and progress a month at a time calling your code
for every month of price history available for the active symbol.

To plot a value for the current bar, you simply need to call Plot = in your code. Example:

Plot = 0

Plot = Price.Close

Plot = (price.high + price.low + price.close) / 3

The first example above will simply return a flat line at 0. The second example will simply return the

close price for the active symbol for every bar, essentially a price history plot with the line style selected.
The third example returns the average trading range for the current symbol (this type of calculation is
used in pivot points).

Page | 26

As long as you call Plot = value in your code your indicator will plot that value on the chart. If
you do not type Plot = in your code, or if the path in your code fails to set Plot to a value or if you set
Plot = Single.NaN it will not plot a value for the current bar.

RealCode indicators also get a special property they can set to create a custom Label.
A custom label is any text you wish to appear on the chart or with a data export of your RealCode

indicator. Custom labels also use the current bar methodology like the Plot = value syntax.
The following is an example of a custom indicator that draws the month name as a label on the first

bar of the month:

plot = price.close

If price.DateValue.month <> price.datevalue(1).month Then

 label = price.DateValue.tostring("MMMM")

End If

The code checks for the month of the current date with the month of the previous bar, and if they're
not the same (meaning it's a new month) it will set the Label property to the month name

(.tostring("MMMM") formats the current date value with the month name). The code above
produces a chart in the image below:

The display of the custom labels can be set using the Indicator editor. The size, position and color
can all be changed from the Indicator editor. See the StockFinder manual for more information on
chaning the display of your RealCode custom labels.

RealCode Conditions

To create a new RealCode condition: click on the Add Indicator/Condtion button at the top of the
Chart and select New RealCode Condition. To edit an existing RealCode condition, right-click on the
condition “bubble” and choose Edit RealCode. See Figure 1 for an example of a Condition Bubble.

Page | 27

Figure 1 - RealCode rule bubble in red at bottom of pane

Like an indicator, your RealCode condition runs in the context of the current charts symbol and Bar

interval. By default, RealCode conditions are in the fail (false) state so you only need to program the
RealCode condition when it passes. Conditions can be used to paint indicators, scan a WatchList, Sort on
a Condtion light in the Watchlist or perform a trade condition in BackScanner.

When your condition becomes true, you simply need to call the Pass method. Example:

If price.close > price.close(1) then Pass

If Volume > Volume(1) then Pass

If Price.High = Price.Last then Pass

The first example will pass if the current close is greater than the previous close. It will put a true
marker on the current bar. The second example passes if the current volume is greater than the
previous bar’s volume. The last example will put a true marker on the chart if the price closed at the

high of the day. If your code has already made a call to Pass, but you need to change the result simply

use the Fail keyword at any point in your code.

RealCode Paint Brush

You can paint your indicators by your RealCode Conditions, but sometimes you might want some
special logic to perform your painting. RealCode paintbrushes are part of the Paint
Scheme that is applied to your indicators. To create a RealCode Paint Brush, Left click on the indicator
you wish to paint and select New Paint Scheme on the Paint Scheme drop down . Check the Apply
RealCode checkbox, this will open the RealCode Paintbrush Editor.

Page | 28

When creating a RealCode Paint Brush you are writing code to color an indicator on the chart. Paint

Brushes are applied to an existing indicator on a Chart. A Paint Brush is similar to a RealCode Condition
in that they both test for a Boolean value. Unlike a Condition, a Paint Brush can return different values
(colors) for multiple Boolean tests. The result of calling your Paint Brush code will assign a color the

currently calculating bar. To set a color in code, set the PlotColor variable equal to the color you
wish to apply. Example:

If price.close > price.close(1) then

 PlotColor = Color.Lime

ElseIf price.close < price.close(1) then

PlotColor = Color.Red

Else

PlotColor = Color.White

End if

In the example above, we assign one of three colors to the plot. The first line checks for a positive

gain (current price greater than the previous bar’s price). If it’s an up bar, it sets the PlotColor to
Color.Lime (Lime is the bright green on the price chart). The third line checks for the opposite of
the first line, that the close is lower than the previous bar’s close. If this is true it sets the PlotColor

Page | 29

to Color.Red. The fifth line is simply the last possible combination: it closed the same as the
previous bar (it was neither down nor up). In this case it will set PlotColor to Color.White.

Colors can also be assigned from UserInput variables. This allows you to change the output color of
your Paint Brush without having to edit your code.

Saving your RealCode

You can save RealCode Indicators and Conditions by clicking the Save button on the editor or right
clicking on the item and choosing save. To save a Paint Brush, open the Paintbrush editor and choose
the save button. If your RealCode references any indicators or conditions on the chart, then those
indicators/conditions will be embedded into your code so it will continue to work when you open your
RealCode at a later time.

Page | 30

Page | 31

Chapter 4 - The RealCode Editor

Whenever you create or edit RealCode you
will use the RealCode editor. It is a text editing
tool that behaves much like Microsoft Visual
Studio. When typing in the editor, you will
receive code tips (similar to MS Intellisense™)
to help you complete your code. For instance
when typing in the editor, you can type Me.
(don’t forget the period) to see all the
properties and methods you can call on the Me
object. To see everything available to you for
pricing data, type Price. (don’t forget the
period) and the list of properties and methods
from the Price object will pop up (Figure 2).
You can select an item from the list by
continuing to type the name of the item, or
you can use the up/down arrow keys to select
the item on the list and hit tab to finish the
word. The code tips are a great tool for
learning all the properties and methods that
are available for you to call as well as speeding
up your development time by typing code for you. The code tips are separated into the most commonly
used but you can display all properties/methods by clicking on the All tab. You can also invoke the Code
tips popup by hitting ctl+spacebar.

You can access the RealCode API

documentation from the Editor by hitting
F1 at any time. For instance, if you need
help with the AVG function you can type

Price.AVG and hit F1 to pull up the
help for the AVG function. This will list
the functions on the left hand side.
Double clicking on a topic will pull up the
documentation for that topic and allow
you to browse the help and code
samples.

By default, the editor will re-compile

your code every time you change lines of code or select a new line with your mouse cursor; essentially
every time you hit the enter, up and down arrow keys or click on a line with your mouse. The compile
process takes place in the background and any errors it encounters will display in the error list at the
bottom. Sometimes, the editor will highlight a problem area of code with a red squiggly line under a
word at or near the problem. Figure 3 shows the RealCode editor with an error on line 3. Notice the red
squiggly line on the word Then. The error in the error list says we’re missing a comma, ‘)’ or a valid
expression. We forgot to close our parentheses for the netchange(1). Putting our mouse over the
highlighted word Then shows us a tool tip with what the problem is. You can double click on the error
in the list to take you to take you right to the line with the problem.

Figure 2 - Auto-complete code tips

Page | 32

Figure 3 - RealCode Editor with an error

If you need more room for editing your code, you can collapse the bottom error list by clicking on

the splitter between the text input and the error list. Also, you can resize the editor window or double
click the header to maximize the code window.

Clicking the Apply button will compile your code and update the RealCode item with your changes.
Hitting Apply allows you to see the results of your edits to verify the results. When you are finished
editing the code, you can close the editor window with the Ok button or hitting the X in the upper right
corner.

Page | 33

 Chapter 5 – RealCode Functions

RealCode includes some built in functions (calculations). These are not standard vb.net functions,
they have been provided by the StockFinder compiler as commonly calculated methods. All of these
functions work on the built in Price and Volume objects as well as any indicators you import into your
code. This chapter in no way is a complete overview of all the functions available to you. Please refer to
the RealCode API from the RealCode Editor in StockFinder (press F1) or online at
http://www.stockfinder.com/realcodeapi/

Function Return Type Description

NetChange Single Returns the net change from the
previous bar

NetChange(NetChangePeriod,BarsToOffset) Single Returns the net change for the
specified period and offsets x
bars ago with the BarsToOffset.
NetChange(1,0) is equivalent to
NetChange()

PercentChange Single Returns the percent change from
the previous bar

PercentChange(PercentChangePeriod,BarsToOffset) Single Returns the percent change for
the specified period and offsets x
bars ago with the BarsToOffset.
PercentChange(1,0) is equivalent
to PercentChange()

MaxOpen(period),MaxHigh(period),
MaxLow(period), MaxClose(period)

Single Returns the max value
(open,high,low or close) in the
last x number of bars (period).

MinOpen(period), MinHigh(period),
MinLow(period), MinClose(period)

Single Returns the min value (open, high
low or close) in the last x number
of bars (period)

TradeRange Single Returns the High minus the low
for the current bar

TradeRange(offset) Single Returns the High minus the low
for the offset number of bars ago

Me.BarInterval TimeSpan Returns the currently selected
BarInterval as a TimeSpan object.

Indicator.AVG(period) Single Returns a simple moving average
value for the specified period, for
the currently calculating bar. Can
be applied to Price,Volume or any
imported indicator

Indicator.MovingAverage(period) Indicator Returns the indicator for the
moving average for the specified
period. Can be used to chain
multiple calculations.

Indicator.XAVG(Period) Single Returns the exponential moving
average value for the specified
period for the currently

http://www.stockfinder.com/realcodeapi/

Page | 34

calculating bar. Can be applied to
Price, Volume or any imported
indicator

Indicator.STOC(period,%k) Single Returns the stochastics value for
the specified period for the
currently calculating bar. Can be
applied to Price, Volume or any
imported indicator

Indicator.RSI Single Returns the RSI value for the
specified period of the currently
calculating bar.

Me.isDaily, Me.isMinute, Me.isHourly,
Me.isMonthly, Me.isWeekly, Me.isYearly

Boolean Returns true if your code is set to
the specified bar interval

NetChange & PercentChange Functions

NetChange - Returns the net change from the close of the previous bar to the close of the current
bar. You can also provide it two parameters to change the bars and period for the net change. The
following two lines of code return the net change from the previous bar to the current bar (net change
today if on a daily chart):

Plot = Price.Close – Price.Close(1)

Plot = Price.NetChange()

You can also call NetChange() with two parameters. The first parameter changes the period for
the net change. The two lines below calculate the net change from today to two bars ago (two day net
change if on a daily chart).

Plot = Price.Close – Price.Close(2)

Plot = Price.NetChange(2,0)

The second parameter for net change offsets both bars. Instead of calculating for the current bar,

you could find the next change for the previous bar. The following two lines of code both provide the
previous bar net change (yesterday’s net change on a daily chart)

Plot = Price.Close(1) – Price.Close(1 + 1)

Plot = Price.NetChange(1,1)

PercentChange returns the percent difference from the previous bar to the current bar. It also

accepts the same parameters as NetChange.

Max/Min Open,High,Low and Close

Page | 35

MaxHigh (MaxOpen,MaxLow,MaxClose) – all return the highest value for the given bar
over a period. The following two code examples both return 10 bar high (10 day high if on a daily chart):

Calculate the Max High for price over the last 10 bars, using a loop

Dim calculatedMax as single = single.minValue

For i as integer = 0 to 9

 calculatedMax = System.Math.Max(calculatedMax,Price.High(i))

Next i

Plot = calculatedMax

Calculate the Max high for price over the last 10 bars using the MaxHigh function

Plot = Price.MaxHigh(10)

MinHigh (MinOpen,MinLow,MinClose) – all return the lowest value for the given bar over a period. The
following two code examples both return the 10 bar low (10 day low if on a daily chart)

Calculate the Min Low for price over the last 10 bars, using a loop

Dim calculatedMin as single = single.MaxValue

For i as integer = 0 to 9

 calculatedMin = System.Math.Min(calculatedMin,Price.Low(i))

Next i

Plot = calculatedMin

Calculate the Min Low for price over the last 10 bars using the MinLow function

Plot = Price.MinLow(10)

All of the Max and Min functions also accept a second optional parameter to get the Max/Min value
with an offset. To get the 10 bar high for yesterday’s bar you would call the example below:

Plot = Price.MaxHigh(10,1)

TradeRange Function

TradeRange returns the High minus the Low for the current bar. The following two lines of code are

equivalent:

Plot = Price.High – Price.Low

Plot = Price.TradeRange

Page | 36

TradeRange can also take a parameter to offset the bars for the calculation. The following two
lines of code return the previous bar trading range (yesterday trading range if on a daily chart)

Plot = Price.High(1) – Price.Low(1)

Plot= Price.TradeRange(1)

Bar Interval Functions

 Version 5 includes some new helper functions to help identify the bar interval for your
calculation.

Bar Interval functions

isMinute Returns true if chart is set to 1 minute

isHourly Returns true if chart is set to 1 day

isDaily Returns true if set to 1day

isWeekly Returns true if set to 7 days

isMonthly Returns true if set to monthly

isQuarterly Returns true if set to quarterly

isYearly Returns true if set to Yearly

BarIntervalisDays(numOfDays) Returns true if the bar interval is set to the
specified number of days

BarIntervalIsMinutes(numOfMinutes) Returns true if the bar interval is set to the
specified number of minutes

BarIntervalIsYears(numOfYears) Returns true if the bar interval is set to the
specified number of Years

Code Samples:

If isMinute then

 ' Perform a minute calculation

ElseIf isDaily then

 ' Perform a daily calculation

Elseif isMonthly then

 ' Perform a monthly calculation

End if

BarInterval Property

If you need to know more than just a true/false about the current BarInterval the BarInterval
function will return a .net TimeSpan structure that represents the currently selected BarInterval . The
following code is an example of how to use the TimeSpan object to determine the number of minutes or
days for the current BarInterval:

If me.BarInterval.Days > 0 then

 ' Daily or higher

 Select Case me.BarInterval.TotalDays

 Case 1

 ' daily chart

 Case 2

Page | 37

 ' 2 day chart

 End Select

Else

 ' Intraday

 Select Case me.BarInterval.TotalMinutes

 Case 1

 ' 1 Minute chart

 Case 2

 ' 2 Minute chart

 End Select

End if

For more information on the TimeSpan structure see the MSDN documentation at

http://msdn.microsoft.com/en-us/library/system.timespan.aspx

Child Functions

There are a series of child functions available to call on any RealCode indicator. They are named
Child functions because they calculate on an existing set of data (Price, Volume). They data they use in
their calculation is the Parent data. These are more commonly known as indicators like Moving
Average, Stochastics, Relative Strength Index and Wilders RSI. Any indicator you import via the Library or
Chart can call these child functions to get the derivative data.

Indicator.AVG & Indicator.MovingAverage(20)

A standard Simple moving average for the specified period

Plot = Price.AVG(30) ' 30 Bar Simple Moving Average

Plot = Volume.AVG(20) ' 20 bar Simple Moving Average of Volume

The AVG function will return a single data point. AVG is the shorter form of calling

MovingAverage. You can use the longer version of you need to “chain” multiple child indicators
together. For instance you want a moving average of a moving average:

' Plot the 5 bar moving average of a 40 bar moving average

Plot = Price.MovingAverage(40).AVG(5)

You can also use the look-back parameter to get previous bars of data. The code below will return
the previous (yesterday on a daily chart) bars 20 period moving average:

 Plot = Price.AVG(20,1)

Indicator.XAVG & Indicator.ExponentialAverage

XAVG and ExponentalAverage use the exponential moving average calculation. These
work in the same way as the AVG and MovingAverage functions:

Plot = Price.XAVG(30) ' 30 Bar Exponential Moving Average

Plot = Volume.XAVG(20) ' 20 bar Exp Moving Average of Volume

http://msdn.microsoft.com/en-us/library/system.timespan.aspx

Page | 38

Indicator.STOC & Indicator.Stochastics

STOC and Stochastics use the exponential moving average calculation. These work in the
same way as the AVG and MovingAverage functions:

Plot = Price.STOC(30,3) ' a 30,3 Stochastics

Plot = Price.Stochastics(30,3).AVG(5) ' A 5 bar moving average of

a 30,3 Stochastics

Indicator.RSI & Indicator.RelativeStrengthIndex

A relative strength index for the specified period and average period

Plot = Price.RSI (15,5) ' a 15,5 RSI

More Functions, Properties and Methods

For more documentation on the classes, functions properties and methods available to you in
RealCode, see the RealCode API class reference: http://www.stockfinder.com/realcodeapi/

http://www.stockfinder.com/realcodeapi/

Page | 39

Chapter 6 - Accessing External Indicators, Conditions and Parameters.

A RealCode calculation can read the values of the existing Indicators and/or Conditions (including
other RealCode Items). These existing Indicators and/or Conditions can be from the Library, your
computer or from a Chart in your layout.

You can also define User Input Variables that can be assigned at run time from the Edit option. This
is a really great feature of RealCode. This means you can daisy chain calculations to create more
complex and aggregate data and use variable parameters for performing your calculations.

External data is referenced through a Directive. A RealCode directives start with the comment
symbol (') and then the pound symbol (#). By adding a directive you instruct the RealCode editor to
write some background plumbing code to ensure that you can read the values of an external item. These
directives are a StockFinder RealCode™ exclusive feature and not a part of the .Net framework.

Importing Indicators

Referencing an Indicator in your RealCode allows you to leverage the existing Indicator Library (or
your own custom RealCode Indicators) and perform aggregate calculations or conditional testing. Any
indicator values in the Library or on your Chart can be accessed by your RealCode.

The easiest way to access an Indicator is to add it from the Import Indicator button and choosing the
Indicator or Condition to import into your code:

After you select the indicator or

condition to import into your code,
you will be asked to provide a variable
name for the indicator. You will not
be able to change the variable name
once chosen.

Type the variable name when
prompted and choose Ok.

Page | 40

In previous images, if we were to choose MoneyStream from the Library and gave it a variable name

of MS it would add the following line of code:

'#MS = indicator.Library.MoneyStream

This line of code starts with our input

directive '# and then declares a variable
name for the indicator. In the above
example MS is the variable name we
gave to MoneyStream Once we have
referenced the item, we can use it just
like the built in Price and Volume
variables and can call any of the built in
functions (Max/Min, netchange etc).

The MoneyStream Indicator can now

be accessed using MS.Value to get the
value at the current bar, or MS.Value(x) to get the value x number of bars ago. The Value property
returns a Single data type. You can access any of the Open, High, Low, and Last properties for an
indicator (if applicable) by using the variable name. You can also call child functions just like the Price
and Volume objects. In the screen shot above, we are plotting the 10 bar moving average of
MoneyStream.

Importing Indicators/Conditions from the Chart

In addition to being able to import indicators and conditions from the Library, you can also
reference the items on your chart, creating a link to those values. You might import indicators or
conditions from the chart, instead of the library, because you want the values to stay synchronized
when you change a parameter on the chart. Say you import a moving average to your RealCode from
the chart. If you update the moving average period (or change the average type from simple to
exponential) your RealCode will automatically recalculate on the new moving average values.

Importing a condition or indicator from the chart by dragging the indicator or condition directly into
the RealCode Editor and dropping it on the code. This would create a new line of code similar to below:

'# MA = chart.MovingAverage.3

The MA is the variable name assigned to your indicator and can be renamed to any name you like

(unline indicators/condtions imported from the library). This variable will now behave just like any other
Indicator object and can be called for it’s .Value, .MaxHigh, AVG etc.

When saving a RealCode item that references indicators and/or conditions on the chart, those

references will become embedded into the RealCode and behave as if you added them from the library.
When you load a RealCode item that referenced a chart indicator, it will no longer be linked to the
original item on the chart. Any parameters for the original indicator can be set by editing the RealCode
indicator properties.

Page | 41

Chapter 7 - RealCode Classes

So far, all the examples have been using the default Code tab in the editor. The code tab handles
looping and calling your code for each bar on the price chart. Sometimes your calculation might be
more complex or might need to control the enumeration of the prices. This is where RealCode classes fit
in.

 A class is an object oriented concept and is a standard programming construct. For more
information about classes, view the .net Framework reference at http://msdn.microsoft.com . For our
purpose writing your code as a class gives us the following advantages:

 User functions. You can write functions in your class to perform the same calculation
more than once

 Inheritance – your class can inherit another class that contains existing reusable logic

 Custom Looping – You can override the default RealCode behavior and enumerate the
price data using your own custom loop.

 Custom Timeframing – while this was possible without classes, it’s much easier with the
custom looping.

 “Global” variables without the need for static keyword – you can define class level
member variables that do not need to be managed like the static variable examples in
later chapters.

 Private Classes – you can write your own classes to encapsulate a custom data set in
your calculation.

Fundamentally, there is nothing different about writing RealCode as a class or as a function body.

When writing RealCode, the compiler generates a class for you behind the scenes. You can switch back
and forth between the class and the function body by using the tabs at the bottom of the RealCode
Editor:

Figure 4- The RealCode class tab

http://msdn.microsoft.com/

Page | 42

When writing a RealCode class you simply need to fill in the default method that is stubbed out

when you open the Class tab. For an indicator that method is named Plot. By default, RealCode classes
behave the same as standard RealCode: your method will be called once for every index in the Price
history. You can override this default behavior and do all your own looping by creating a new
constructor at the top of your class.

Manual Looping (AutoLoop = false)

Manual looping is the process of changing the default RealCode behavior of calling you once for

every date on the price chart to calling you once for the active symbol. This can improve performance
because you can decide how much (if any) to loop. The drawback of this method is that your inputs will
not be interpolated (synchronized) and you will not be able to use any of the built in child functions,
lookback functions and most of the built in helper functions.

Additionally, when autoloop = false, you can no longer use the return keywords for your item (plot,
plotcolor or pass). Instead you will need to construct your own output by calling AddToOutput (see
examples below)

 When performing your own looping you will want to call the Price.Bar object to get the raw

array data. Unlike the default Price.Open object where an index parameter is the number of bars
ago, Price.Bar.OpenValue is a 0 based index, where 0 is the first Value in the array and

Price.Count – 1 is the last bar in the array. In pseudo code:

Price.Open(0) <> Price.Bar.OpenValue(0)

Price.Bar.OpenValue(0) is the first open value in the data array while Price.Open(0) is a moving

target, it will always equal the current open value when used in the traditional AutoLoop method.
When performing your own price looping, you can call the AddToOutput method to create your

indicator. AddToOutput has two overrides to create your indicator, one to output a single value and
one to output bar data.

Mybase.AddToOutput(dateValue,Open,High,Low,Close)

Mybase.AddtoOutput(dateValue,Value)

Although you are writing your own class, you cannot write any imports statements at the top of the
class, nor should you modify the first or second line of the class. Doing so will result in your class not
compiling correctly. When editing a RealCode class you can edit the lines between the inherits
RealCodeIndicator_base and End Class. See the sample class below that performs our own looping to
output the price data:

Page | 43

Public partial Class RealCodeIndicator

inherits RealCodeIndicator_base

 Sub New

 MyBase.AutoLoop = False

 End Sub

 Public Overrides function Plot() as System.Single

 For i As Integer = 0 To price.bar.count - 1

 Me.addtooutput(price.bar.datevalue(i), _

price.bar.value(i))

 Next

 End Function

End Class

Note: When AutoLoop is set to false, you cannot use many of the built in methods and

properties. Any property or method that uses lookback or barsAgo parameters will not be valid
in the manual looping context. If you are looping over the Price.Bar data (or the bar data for
any imported indicator, or any other RealCodeIndicator object) the lookback parameters, AVG
functions, isFirst,isLast are not valid because the class is not managing the looping for you. In
fact many of the functions are simply not needed as you are controlling the index of data array.
Additionally, the need for static variables (as used in many examples in this reference) are not
needed as your function will only be called once.

Page | 44

Page | 45

Chapter 8 – Getting Deeper into RealCode

Writing with RealCode is pretty straightforward. Your code will be called (executed) for every bar

that is to be drawn, painted or tested (Indicator, Paint Brush or Condition). If your code requires a bit
more complexity than a simple mathematical calculation this chapter will help you solve more advanced
RealCode problems.

Cumulative Indicators

When writing a cumulative indicator (like and Advance/Decline or Exponential moving average) you
will need to add the '#CUMULATIVE directive at the top of your code. Cumulative indicators are
indicators that change based on their starting value, or need the entire data set to perform the
calculation. Using the '#CUMULATIVE directive will instruct the compiler to always use as much history
as available. When your code is used in a WatchList, the software attempts to use the least amount of
data as possible to perform your calculation. This performance enhancement cannot be used on
cumulative indicators.

Variables and Scope

Scope is a programming term used to define what parts of your code can access different variables.
By default, every variable “falls out of scope” when the end of your code is reached. This means that
the values of your variables are “reset” to their default value and do not persist between calculations.

You can override the default scope of a variable by adding the static keyword. Static tells the
compiler to keep the value in memory between calls to your code. Example:

Static AdvanceCount as integer

If Me.isFirstBar then

 AdvanceCount = 0

Else

 If price.Close > price.Close(1) then

 AdvanceCount = AdvanceCount + 1

Else

 AdvanceCount = 0

End if

End if

Plot = AdvanceCount

The above code outputs a line that counts the number of bars in a row that the stock went up. If the

stock does not go up then it resets the counter back to 0. Because by default our variables fall out of
scope at the end of our code, we need to declare our counter variable AdvanceCount with the

Static Keyword. This will preserve the current value of the variable so you can access it at the next
time your code is called.
 When using Static variables, if you need to reset your value back to a default, test the
Me.IsFirstBar (or Me.IsLastBar to clean up any static variables and reduce the amount of memory used).
The second and third line of code test for the first bar of the calculation and reset our counter back to 0.

Page | 46

NOTE: When using Classes you do not need to use static variables to keep values between calls to your
code as you can create a class member variable. The previous example can also be represented in a class
as the following:

Public partial Class RealCodeIndicator

inherits RealCodeIndicator_base

 Private AdvanceCount As Integer =0

 Public Overrides Function Plot() As System.Single

 If isFirstbar then

 AdvanceCount = 0

End if

 If price.NetChange > 0 Then

 AdvanceCount += 1

 Else

 AdvanceCount = 0

 End If

 Plot = AdvanceCount

 End Function

End Class

Where in the world am I running?

Sometimes you might need to know information about the chart or the list in which you’re
calculating for. When your code is visible on a chart you might want to know the number of bars that
are visible or the chart start/end dates. When running as part of a Market Indicator you might want to
know how many symbols are in the list and when you’re on the first or last symbol. Version 5 adds some
additional RealCode functions to access this data:

Me.ActiveChart Returns an object representing the active chart
Me.isListCalc Returns true if running as a market indicator
Me.ActiveList Returns an object representing the market indicator calculation

The ActiveChart object will give you access to the following properties:

BarsVisible The number of bars visible on the chart, set by the Zoom factor
ZoomEndDate The far right date on the chart, or the latest date visible
ZoomStartDate The far left date on the chart or the first date visible

By default, your RealCode will only be called when a symbol, bar interval or parameter is changed.

There is a new directive you can add to your code to have it re-calcluate when the zoom/scroll changes
on the chart:

'#RECALC_ON_ZOOM_SCROLL

Page | 47

Adding this directive will cause your RealCode to recalculate on every zoom or scroll change. NOTE:
this may significantly reduce performance especially if your RealCode uses a lot of resources or cpu.

Debugging

With the introduction of the Custom Label property in RealCode Indicators (see chapter 3)

debugging your RealCode has become easier than in previous versions of StockFinder.
Using the Label property in combination with the Export Data feature of StockFinder you can attach

any text value to every value you plot with your indicator. This is by far the easiest way to include some
debugging information with your RealCode.

For example, lets say you're having trouble with some logic in your RealCode. You have a variable
counter that you want to see the value for on every iteration of your code. You could output the
counter's value in the Label property and then show that label on the chart or export your indicator and
view the counter values. The following code illustrates an example where you can show your internal
variables in the Label property.

Static myCounter As Integer

If isFirstbar Then

 myCounter = 0

End If

If price.netchange > 0 Then

 myCounter += 1

Else

 mycounter = 0

End If

plot = price.close * myCounter

Label = MyCounter

The second option for debugging is to write to the debug log. The debug log can be written to by
using the Me.Log property. You can view the debug log from the Help tab. The Log property has a few
sub properties to choose which log style to write to. The log style is simply a matter of what type of
message you want to write. You can write to the Error, Warning or Info logs. Examples:

 Me.Log.Info(“This is my log text”)
 Me.Log.Warn(“This is my warning test”)

 Me.Log.Err(“This is my error message”)

The debug log is a good place to put single lines of text once per call (say on the first or last bar of
your RealCode). If you want to write to the debug log on every call to your code, you should consider
using the Label property instead.

Additionaly, if you have Microsoft

Visual Studio installed, you can use it’s
built in just-in-time debugger . This will
allow you to set breakpoints and step
through your code line by line. To use
Visual Studio’s debugger you simply

need to add the Break statement
anywhere in your code. If you add it to
the top and test for the first bar, it
will break into your code the first

Figure 5 User-Defined Breakpoint

Page | 48

time it’s called. Example:

If Me.isFirstBar Then

Break

End If

When the debugger hits that line of code it will
prompt you to debug . Click the debug button. You will
then be prompted for the Just-in-time debugger to use.
Choose New Instance of Visual Studi o

If you get the message “No source code for the
current location” you may need to hit F8 or F11
(depending on your visual studio configuration) to step
into the next line of code. Continue to hit F8 or F11 until
your code appears in the debug window. You should now
be attached to the Visual Studio Debugger and can use all
the built in features for debugging your code.

If you want to be able to turn your debugging on or
off without recompiling the code, you could use the
following code snippet:

'# debug = userinput.integer = 0

If Me.isFirstBar andalso debug <> 0 Then

Break

End If

The code sample above adds a user input variable that allows you to change the value of the debug
variable. When you want to launch a debugging session, change the debug value to any other value.
When you are finished debugging, change it back to 0 to keep it from stopping on your breakpoint.

Change the debug userinput variable to 1 to lauch the debugger in your RealCode. Change it back to

0 when you no longer want to debug your code.

Page | 49

Labels and Chart Overlay Text

As mentioned in the debugging section, you can add labels
to a RealCode indicator to draw text on specific bars of the
chart. To apply a label for the current bar, simply set the Label
= property to the value you want to appear. To get the labels
to appear, you need to ensure that the Show Custom Labels
option is checked on your indicator editor (left click on your
RealCode indicator on the chart to show the editor. See
chapter 3 for examples and screen shots of using the Label
property.

In addition to the Label propery, you can set a chart overlay

text value from code that will appear on the overaly of the Chart
(custom overlay needs to be checked from the Chart Properties:
righ click on the chart and choose chart properties, check Custom
Overlay). This allows you to add any text or numeric value to your
chart.

Add the word Last: and the current close value to the chart overlay

Reading Price data for a Different Symbol and/or Bar Interval than the active chart

 By default, your RealCode is calculating under the context of an active symbol. You can read the
active symbol by calling the CurrentSymbol property. All of the calls to the Price object will return your
values for the current symbol. You may wish to include or compare pricing data from different symbols,

Page | 50

or even different bar intervals than the one you’re calculating. Version 5 of StockFinder adds a new
method to return pricing data for different symbols and bar intervals.

Example of how to check the current symbol

If me.CurrentSymbol = "MSFT" then

' We’re calculating for Microsoft

End if

 Below is a basic example of how to plot the daily price data for QQQQ no matter what the Active
symbol is for the chart:

Static altPrice As WBI.CommonBlocks.RealCodeIndicator

If Me.isFirstBar Then

 altPrice = Me.PriceData("QQQQ")

End If

plot = altPrice.value

The key method in the above example is the Me.PriceData method. This will return a
RealCodeIndicator object that has all the pricing data for the specified symbol. This
RealCodeIndicator object is the same as the built in Price object, allowing you to call all the
built in methods including all the child calculations, lookback parameters and properties and even the
bar object for use during manual looping. Anything you can do with the Price object, you can do with
the returned RealCodeIndicator object. Additionally, this object is interpolated (synced) with the
current index for the RealCode calculation, meaning that calling .high, .close or any other property will
return the value for the same bar as as the Price object.

In addition to getting daily data, you can specify a bar interval to use for your pricing data. Below is

a sample that returns 5 minute data for QQQQ:

In the screenshot above, we are plotting the 5 minute QQQQ data. Line 8 in the screenshot defines

our static variable altPrice that will hold on to the QQQQ data object. Line 9 test for the first bar in our
calculation. On line 10 we define a MinuteTimeFrameProvider object. This object represents all of the
minute intervals. On line 11 we set the NumMinutes property to 5, meaning we want each bar interval
to be 5 minutes. We can set NumMins to any whole number allowing us any custom minute interval.
On line 12 we call the PriceData function asking for QQQQ data and passing in the tf variable which is
defined as our 5 minute bar interval.

Below are the available TimeFrameProvider objects to set the bar interval of your custom pricing
data:

Page | 51

DailyTimeFrameProvider NumDays NumDays = 1 for daily

MinuteTimeFrameProvider NumMins NumMins = 1 for Minute

HourlyTimeFrameProvider NumMins NumMins = 1 for hourly

YearlyTimeFrameProvider NumYears NumYears = 1 for Yearly

Note: Any variable you create with the PriceData method will be disposed after the last bar has been
calculated. If you are storing these in static variables (as in the previous sample) you must call PriceData
on the first bar of the calculation otherwise you will get a null reference exception.

Global Variables/Memory

Version 5 of StockFinder adds global variables to RealCode. This allows you to share data between
different RealCode items. Global variables should be used with care, and only in cases where there is
no other way to implement your solution. Using global variables does involve some overhead and will
slow down your RealCode calculation some. They should be used sparingly.

Good reasons to use global variables include:

 Caching long or slow calculation results to reuse in other indicators

 Storing data from a calculation that cannot be accessed directly by importing the indicator
or condition to another RealCode

 Storing data that cannot be calculated in another item without duplicating work

Bad reasons to use global variables:

 Storing entire results of an indicator/condition into a global variable instead of referencing
the indicator/condition in another RealCode item.

Candidates for global variables:

 Roll your own Money Management solution for conditions and backtesting

 Record prices or values when conditions pass to read in other conditions

 Save the most recent value of a long calculation (a cumulative indicator, market index, or
some other resource intensive call)

The global variable object is a .net HashTable. A hashtable is like an array with a unique key
for the index. You can store any value or object into a hashtable and reference it by a key
you provide.

Because hashtables use unique keys to save their values, it’s important that you do not use
the same key name in different RealCode to store different values.

Below is a sample indicator that is storing the last price at which it crosses it’s own 20 bar
moving average:

Page | 52

The key line above is line 10. This is calling the setSharedHashValue method and
providing a key “PriceCrossUpMA20”.

To read the value set in the above condition, we simply call getSharedHashValue and
provide the same key:

The code sample above gets the PriceCrossUpMA20 value and then checks to see if the
current price is below that value.

The two conditions above will work as written in a Filter, where conditions are
evaluated one at a time, one after the other. They will not work in a multi-threaded
context like two conditions on a WatchList sort, painting or a backtest.

The keen developer (or one who has worked with multithreading before) will notice that
there is no mechanism for the second condition (the reader) to ensure that the first
condition (the writer) has actually written a value to the global memory. This is ok for
conditions used in Filters but in any other context (or when using multilple indicators on the
same or multiple charts) you will need to implement a publish/subscribe model. Luckily for
you, we implemented a simple solution for this so you do not have to roll your own.

To modify the above example and turn it into a publish/subscriber model we simply

need to add 3 calls, 2 to the publisher (writer) and 1 to the subscriber(reader).

Page | 53

 In the screenshot above, we hav e modified our first condition to include a check for the first bar
(line 7). We notify any subscribers that we are about to change the data with the key
“PriceCrossUpMA20”. On line 14-16 we call NotifyDataReady with the same key
“PriceCrossUpMA20”.
 Subscribers simply need to wait for the data ready call before reading the value out of the
shared hash. We do this by calling WaitForDataReady:

Well, it is slightly more complex than calling WaitForDataReady. Calling this function will

pause your calculation until NotifyDataReady is called with the same key, or until your timeout
parameter is reached. In the above example we pass in a timeout of 2000 milliseconds (2 seconds) . If

NotifyDataReady is called before our 2 seconds is reached, WaitForDataReady will return true
and we are safe to get the new value, if it returns false, then our timeout was reached and we need to
make sure we don’t perform any calculations on the crossValue variable. I accomplish this by setting it
to a negative number and then test to make sure it’s positive before performing any other conditions.

That’s it! You can store any value in the setSharedHashValue call including arrays, collections or
any other .net object or primitive you choose. All the calls are thread safe and do not need to be
synchronized. You may need to adjust the WaitForDataReady timeout parameter if your publish
calculation takes a long time to finish.

Page | 54

Page | 55

Chapter 9 - Code Examples

This chapter has some basic code examples to use in RealCode.

THESE EXAMPLES ARE FOR EDUCATIONAL PURPOSES ONLY. THE AUTHOR DOES NOT RECOMMEND

THAT YOU USE ANY SUCH CODE AS TRADING SIGNALS, STRATEGIES OR TO RECOMMEND A BUY OR SELL
OF ANY SECURITY. THE FOLLOWING EXAMPLES ARE ONLY TO DEMONSTRATE THE DESIGN AND
IMPLEMENTATION OF REALCODE.

Calculating the Net/Percent Change for a specific number of bars

Level: Beginner
Concepts Used:

 RealCode Indicator
 Price Offset
 User Input Variables

NOTE: This method of calculating the net or percent change is obsolete with the built-in
Price.NetChange an Price.PercentChange functions. Please see chapter 5 for more details. It has been
included for educational purposes only.

This example will calculate the net change between the current bar and X number of bars ago. The
period for the change will be specified by a user-supplied variable from QuickEdit.

Net Change:

'# period = userinput.integer = 1

plot = price.Close - price.close(period)
Percent Change:

'# Period = UserInput.Integer = 1

plot = ((price.close - price.close(period)) / price.close) * 100

Plotting the number of up/down bars in a row

 Level: Beginner
 Concepts Used:

 RealCode indicator
 Static Variables

This code example counts the number of consecutive bars in a row that the stock has moved up (or

down) and plots that number as an indicator. If there is no change between bars the counter remains
the same. This uses a static variable for the up bar counter.

Static UpCount As Integer

If me.IsFirstBar then

 UpCount = 0

Page | 56

End If

Dim netChange As Single = price.Close - price.Close(1)

If netchange > 0 then

 UpCount +=1

Elseif netchange < 0 then

 UpCount = 0

End if

Plot = UpCount

Checking for volume surge at the last hour of the trading day

Level: Intermediate
 modiConcepts used:

 RealCode Condition
 Reading Indicator Values from a Chart
 UserInput Variable
 Checking for a Specific Date/Time

This little code example uses the Volume Surge indicator and a minute to chart to test for volume

surge in the last hour of the trading day (and the last half hour in example 2). By default the volume
surge must be 2 times it’s average volume. Set the SurgeAmount variable in QuickEdit to change it from
2x to any other value. The key lines of code to check for the hour of the trading day are
Me.CurrrentDate.Hour. This property returns the current hour (in 24 hour format) for the
currently calculating bar.

 To create this indicator add Volume Surge to your chart and set the chart bar interval to 1 minute.
Click on RealCode Editor – Condition. Paste the following code into the editor:

'# VS = indicator.VolumeSurge

'# SurgeAmount = UserInput.Single = 2

If Me.CurrentDate.hour >= 15 AndAlso VS.Value >= surgeamount Then

 pass

End If

Here is a modified version of the above that checks only the last half hour of the trading day:

'# VS = indicator.VolumeSurge

'# SurgeAmount = UserInput.Single = 2

If Me.CurrentDate.hour >= 15 AndAlso VS.Value >= surgeamount Then

 If Me.currentdate.hour = 16 Then

 pass

 ElseIf Me.currentdate.minute >= 30 Then

 pass

 End If

End If

Page | 57

Million Shares Traded per Bar

Level: Intermediate
Concepts Used:

 Static Variables
 UserInput Variables
 Custom Timeframing
 Bar (OHLC) Output

In this code example we build the open/high/low and close for every 1 million shares traded. The 1

million is using a UserInput so you that value can be set to any number from QuickEdit to change the
calculation (change the value to 5 for 5 million shares traded for example). The key to this code is that
besides setting the plot value we also set HighValue, LowValue and OpenValue. Setting these
values along with Plot will build a bar instead of a line. When building an indicator, setting the Plot
equal to Single.NaN (not a number) will cause the indicator to skip the current bar. This way we
accumulate the high and low values until we pass our million shares mark and finally output the
open,high,low and last values.

To create this indicator create a new line chart and add a new RealCode indicator from the RealCode
Editor menu. Remove the Price History Pane. Be sure to change the line style of your plot from Line to
OHLC, HLC or Candlestick (left click on plot and change plot style from the dropdown)

'# Million = UserInput.integer = 1

Static o As Single

Static h As Single

Static l As Single

Static volCount As Integer

If Me.isFirstBar Then

 o = price.open

 h = price.high

 l = price.low

 volcount = volume.value

 plot = Single.nan

 Exit Function

End If

If Single.IsNaN(o) Then

 o = price.open

End If

h = System.math.max(h,price.high)

l = System.Math.min(l,price.Low)

volcount += volume.value

If volCount > Million * (10000) Then

 plot = price.Last

 highValue = h

 lowValue = l

 openValue = o

Page | 58

 volCount = 0

 h = Single.MinValue

 l = Single.maxvalue

 o = Single.NaN

Else

 highValue = Single.NaN

 lowValue = Single.NaN

 openValue = Single.NaN

 plot = Single.NaN

End If

Creating Cyclical Charts: Average Monthly Percent Change

Level: Intermediate/Advanced
Concepts Used:

 Static Variables
 Custom Timeframing
 Custom Date Output
 Arrays

This code example creates a cyclical chart (based on months) and outputs the Average percent

change for a stock for every month of the year. This plot is designed to be on it’s own Chart with the
Price history pane removed. This plot will output 12 values (one for every month) using the first date of
the month on the date scale. Improve the look of this chart by changing the Line Style to Bar, zoom all
the way out and scroll all the way back so you can see all 12 months. For the best performance you
should set the bar interval to daily. The sample code uses a special collection object called A Generic
List. The generic lists are stored in an array with a length of 12 (one for each month of the year).
Generic lists are dynamic arrays that are strongly typed (you specify the type when declaring the
variable). For more information on Generic collections see the .net Framework API. This code loops
through the pricing data detecting when the data for the month has changed. When it detects a new
Month it calculates the percent change from the first close of the month and adds it to a Generic.List for
that month. This continues until the last bar is reached and we go average all the percent changes for
every month and output the results.

Static monthChanges(11) As System.Collections.generic.list(Of

Single)

Static PrevMonth As Integer

Static FirstClose As Single

plot = Single.nan

If isFirstBar Then

 prevMonth = currentDate.month

 FirstClose = Price.Close

 For i As Integer = 0 To 11

 monthChanges(i) = New System.Collections.generic.list(Of

Single)

 Next i

Page | 59

ElseIf Not Me.islastbar Then

 ' not the first or last bar. record the net change from the

monthly open

 If CurrentDate.Month <> PrevMonth Then

 Dim monthPercentChange As Single = ((price.close(1) -

FirstClose) / FirstClose) * 100

 monthChanges(prevMonth - 1).add(monthPercentChange)

 prevmonth = currentdate.month

 firstclose = price.close

 End If

Else

 ' Last bar of the calculation. Average each month

 For i As Integer = 0 To 11

 Dim avg As Single = 0

 Dim outDate As Date = New Date(Date.now.year -1 ,i + 1,1) '

set it to the first day of the month for this year

 For j As Integer = 0 To monthChanges(i).count -1

 avg += monthChanges(i).item(j)

 Next

 avg /= monthchanges(i).count

 Me.addtooutput(outdate,avg)

 Next

End If

Simulating an Alert with RealCode Conditions

Level: Advanced
Concepts Used:

 IsLastBar
 Undocumented Functions
 Playing a wave file

This code example is a Hack (technical term for doing something that the program never intended to
do) that has been posted on the Worden.Com forums by one of the developers. The original post can be
found here: http://www.worden.com/training/default.aspx?g=posts&t=28507

WARNING: The following is not supported by Worden Brothers, Inc. proceed at your own risk!

Start by adding a new RealCode Condition to your Chart. As part of your conditional testing to see if

your Condition passes add a check for Me.IsLastBar = true this will only perform the test if it's
on the last bar (for a performance boost, you can perform this check first and short circuit the rest of
your conditions).

Below is a code example for testing if the net change is > 0 and it's the last bar. If so it plays a wave file.

If Me.isLastBar AndAlso Price.NetChange > 0 Then

http://www.worden.com/training/default.aspx?g=posts&t=28507

Page | 60

 pass

 LokiStatic.PlaySound("c:\alert.wav")

End If

Replace the c:\alert.wav with the path to any valid wave file on your computer. You should replace
the net change condition (Price.close > price.close(1)) with something that is not a very
common condition, otherwise your alert will fire over and over again when we start scanning for this
Condition. Click apply and close the code editor window. This will now play the wave file anytime you
browse to a symbol where the Condition is true for the last bar.

To make this alert fire for any symbol in your WatchList, drag the Condition to your WatchList and check
the column header to add it to the active scan (there should be a flag next to the column header if it's
part of the scan). It should now play the sound for every symbol that passes your Condition. Again,
make sure your Condition is something that happens infrequently for a list of symbols otherwise your
alert will fire for every symbol in your list that passes and will play the sound over and over again.

If you want a popup Alert every time it passes you can add this line of code after the PlaySound line:

 Me.ShowMessage("Net Change alert on" & Me.CurrentSymbol)

Alternatively if you want to log every alert that passes (in case you’re away from your desk) you can use
the following line with/instead of popping up a message or playing a sound:

Me.log.info("Alert passed on " & Me.currentsymbol & " with a price of

" & price.close)

Again, make sure your alert Condition is rare, otherwise you will get many popup windows for every
symbol that passes and will have to hit OK for every symbol (if you’re using the ShowMessage call).

You can also use an existing Condition and drag it into your alert Condition to create an alert when the
existing Condition passes.

'# SC = condition.ScanCondition.3

If Me.isLastBar AndAlso sc.Value Then

 Me.log.info("Alert passed on " & Me.currentsymbol & " with a

price of " & price.close)

 pass

End If

Using a RealCode Class to create your own price history manually

 This example is purely an educational one, in that it gives you nothing that you don’t already
have available to you in StockFinder by default. This example will loop through the stock price to output
an open,high,low and close value. It shows you how to enumerate the price array from start to finish
and to create your own data.

Page | 61

 If you understand this basic code, you should be able to modify it to do some of the previous
examples (Monthly cyclical charts would be a good candidate to re-write as a class and do your own
price history enumeration)

 When re-producing the example, you do not need to provide the first two lines (Public
partial class) or the last line of the class (end class). You should simply insert the Sub New
and the Overrides Plot methods.

Public partial Class RealCodeIndicator

 Inherits RealCodeIndicator_base

 Sub New

 MyBase.New

 MyBase.AutoLoop = False

 End Sub

 Public Overrides Function Plot() As System.Single

 For i As Integer = 0 To price.count -1

MyBase.AddToOutput(price.bar.datevalue(i),price.bar.Op

enValue(i),price.bar.highValue(i),price.bar.lowvalue(i

),price.bar.value(i))

 Next

 end function

End Class

The key to the code above is the constructor, sub new. In the constructor we set the AutoLoop
property to false. This tells the base class to call our plot function once and we will provide all the data
for our calculation.

Once AutoLoop is set to false, we can enumerate the price history by using the Price.Count

property and calling Price.Bar to get the raw data arrays for the price history.
You can also import other indicators from the chart and call their Bar and Line properties to get

the raw values for the indicator.
There is one important thing to not about performing a custom loop with imported indicators. They

will not be interpolated and the price and indicator array indexes will probably not match in dates. This
means you will need to perform your own interpolation or find the indexes that match on your own. As

a general Condition all indicators on the chart should be in order from oldest bar to latest, so index 0

will be the oldest value and index Count – 1 will be the newest.

Page | 62

Page | 63

Chapter 10 – Code Samples for StockFinder Workbook

The code samples in this chapter are RealCode implementations of the exercises from the
StockFinder 5 Workbook.

Exercise 1 – Unusually High Trade Range

Goal: To isolate stocks with a higher than normal trading range on the most recent price bar.

Solution: We perform our own simple moving average of the Price trade range. Compare our

current trade range with our moving average

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Above Average Trade Range
'|**
'# avgPeriod = userinput.integer = 30
Static sum As Single
Dim TradeAvg As Single
If isFirstBar Then
 sum = 0
End If
If currentindex = avgPeriod - 1 Then
 ' compute the average for the first 30 bars (or whatever avgPeriod is set to)
 For x As Integer = 0 To avgperiod - 1
 sum += price.TradeRange(x)
 Next
ElseIf currentindex > avgperiod - 1 Then
 ' update our average, add the current trade range and subtract the trade range from 30 bars ago
 sum = sum + price.TradeRange - price.TradeRange(avgperiod)
 tradeavg = sum / avgperiod
 ' check to see if the current trade range is above average
 If price.TradeRange > tradeavg Then
 pass
 End If
End If

Exercise 2 – Above Long and Short Averages

Goal: To isolate stocks above their 20 and 50 bar moving averages

Solution: Use a user input variable for the short (20) and long (50) period averages. Use the built in
AVG function to get the moving average values

http://www.worden.com/

Page | 64

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Above short and Long averages
'|**
'# longPeriod = userinput.integer = 50
'# shortPeriod = userinput.integer = 20
If price(0) > price.AVG(shortPeriod) AndAlso price(0) > price.avg(longPeriod) Then
 pass
End If

Exercise 4 – ADX Values over 40

Goal: Isolate stocks with an Average Directional Index (ADX) value greater than 40

Solution: Use the ADX indicator from the library and compare it with a user input variable.

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Adx Greater Than Value
'|**
'# ADX = indicator.Library.Directional Movement DI ADX
'# greaterThan = userinput.integer = 40

If ADX.value > greaterThan Then pass

Exercise 10 – Price down Ten Percent in a month

Goal: To isolate stocks which have moved down ten percent or more over the last 21 trading days

Solution 1: Use the Percent Change function with a user input parameter to specify the change
period and compare it with a user input variable for the degree of the percent change.

Solution 2: We included a second solution here that uses a calendar month instead of 21 trading
days. This solution gets monthly price data for the current symbol and performs a percent change
comparison vs the change amount.

http://www.worden.com/
http://www.worden.com/

Page | 65

Solution 1: Price down 10 percent in last 21 days

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Price Percent Change
'|**
'# changePercent = userinput.integer = 10
'# bars = userinput.integer = 21

If price.PercentChange(bars) <= (0 - changepercent) Then pass

Solution 2: Alternate version using true calendar months

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Price Percent Change
'|**
'# changePercent = userinput.integer = 10
Static mp As RealCodeIndicator
If isFirstBar Then
 Dim tf As New MonthlyTimeFrameProvider
 tf.numMonths = 1
 tf.dostreaming = False
 mp = PriceData(Me.currentsymbol, tf)
End If

If mp.percentchange <= (0 - changepercent) Then pass

Exercise 12 – Filter out low volume stocks

Goal: To filter out stocks in a WatchList that trade on average less than 200,000 shares each day

Solution: Test for the volume value greater than 2000

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:High Volume
'|**
If volume.value > 2000 Then pass

http://www.worden.com/
http://www.worden.com/

Page | 66

Exercise 15 - MACD Histogram turning up

Goal: To isolate stocks where the MACD Histogram indicator is crossing from negative to positive

Solution: Test the MACD Histogram indicator from the library

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:MACD histo turning positive
'|**
'# MACDHisto = indicator.Library.MACD Histogram

If MACDHisto.value > 0 AndAlso MACDHisto.value(1) <= 0 Then pass

Exercise 17 – Moving Averages Crossing

Goal: To identify stocks with two moving averages (of price) crossing.

Solution: Compare Price.AVG functions with each other

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Crossing MA
'|**

If currentindex < 50 Then
 Me.setindexinvalid
End If

If price.AVG(20, 1) < price.AVG(50, 1) AndAlso price.AVG(20) >= price.avg(50) Then pass

Exercise 18 – Oversold Stochastics

Goal: To identify stocks with a Stockastics Value below twenty

Solution: Use the Stoc child function to test for a value below 20

http://www.worden.com/

Page | 67

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Oversold Stochastics
'|**

If price.stoc(12, 2) < 20 Then pass

Exercise 21 – Price beween $10 and %50

Goal: to isolate stocks that trade between $10 and $50 per share

Solution: Check the price.last value

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition:Price between 10 and 50
'|**
If price.last >= 10 AndAlso price.last <= 50 Then pass

Exercise 25 – Price Above a moving average

Goal: to isolate stocks with price bavoe of below their moving average

Solution: Check for price value above the AVG child function

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition: Price above 20 period ma
'|**
If price.last > price.avg(20) Then pass

Exercise 26 – Stocks with above average volume

Goal: to find stocks which currently are experiencing an unusually high volume of trading.

Solution: Compare volume with the child AVG function

Page | 68

'|***|
'|*** StockFinder RealCode Condition - Version 4.9 www.worden.com
'|*** Copy and paste this header and code into StockFinder *********
'|*** Condition: volume above 30 bar avg
'|**

If volume.value > volume.AVG(30) Then pass

	SF5 RealCode Reference Copyright.pdf
	RealCode Reference

	SF5 RealCode Reference Title Page.pdf
	RealCode Reference

